(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
mark(from(X)) →+ cons(mark(mark(X)), from(s(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [X / from(X)].
The result substitution is [ ].
The rewrite sequence
mark(from(X)) →+ cons(mark(mark(X)), from(s(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / from(X)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)